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The potential of NMR spectroscopy and multivariate analysis methods to detect the adulteration of
orange juice with pulp wash is demonstrated. Principal component analysis has been applied to 1H
NMR spectra of >300 orange and pulp wash juices, and stepwise linear discriminant analysis was
used to classify the samples. A model with six principal components gave a high success rate of
classification (94%) for both training and validation sets. An important principal component loading
showed that dimethylproline played a key role in the discrimination between the two types of juice,
with higher levels in pulp wash. Dimethylproline was not previously known as a marker compound
for orange juice adulteration. An ANOVA test revealed at least 21 other NMR signals that differed
significantly between the authentic and pulp wash groups. The compounds they represent could be
seen as potential marker compounds in addition to dimethylproline. This makes NMR with
chemometrics an attractive screening tool with advantages in terms of rapidity, simplicity, and
diversity of information provided.
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INTRODUCTION

Orange juice is a high-value product traded on a
massive scale (>20 L per capita was consumed in the
United States in 1996). World demand has been growing
during the 1990s, and expectations are that it will
continue to grow for the foreseeable future. According
to U.S. Food and Drug Administration (FDA) investiga-
tions, some companies are known to have made millions
of dollars selling fraudulent orange juice (1). Adultera-
tion of orange juice may be done by the addition of
water, sugars, pulp wash, or other citrus fruit juices
such as grapefruit. Pulp wash is a second extract
obtained by washing the separated pulp with water
after the first pressing of the orange juice. Its chemical
composition is similar in many respects to that of orange
juice but it is paler, more bitter, and regarded as a lower
quality product. Addition of “in-line” or “off-line” pulp
wash to orange juice is at present forbidden in the EU,
although the regulations are to change following adop-
tion of a new Fruit Juice Directive. According to U.S.
federal regulations frozen concentrated orange juice may
contain “in line” pulp wash from the same oranges used
to make the juice concentrate. “In line” addition of pulp
wash to fresh and pasteurized juices is not permitted,
nor is addition of “off line” pulp wash to any category of
orange juice. The adulteration can also be quite elabo-
rate, with the addition of citric acid, amino acids, or
trace metals as well as sugars to mimic the chemical
profile of the authentic orange juice.

Many techniques have been investigated to tackle the
problem of orange juice adulteration. Several reviews
(2, 3) have listed the major techniques employed for this

purpose, such as isotopic and chromatographic analyses.
Most of the chromatographic methods are based on the
study of one specific family of compounds (e.g., sugars).
Instead of considering only one type of compound,
spectroscopic methods such as NMR spectroscopy have
the potential to monitor a wide range of chemicals
(sugars, organic and amino acids, phenolics, etc.) in a
single spectrum. Those methods also offer advantages
in terms of rapidity and simplicity of sample prepara-
tion. The richness of information, however, makes the
spectra too complex to be analyzed or compared by eye.
Multivariate analysis (MVA) is therefore applied di-
rectly to the spectral data to extract the useful informa-
tion. A few papers have previously been published
concerning the application of MVA to chemical data for
orange juice authentication (4-6).

The present work shows the potential of NMR to
discriminate orange juice from pulp wash using prin-
cipal component analysis (PCA) followed by linear
discriminant analysis (LDA) (7, 8). One of the advan-
tages of NMR is that the chemical origins of the
discrimination may be interpretable through an ANOVA
test or through comparison of the principal component
loadings with the spectra. This permits identification
of compounds involved in the differentiation of orange
juice and pulp wash and may uncover novel marker
compounds. The ultimate aim would obviously be to
distinguish authentic samples from ones adulterated by
pulp wash and to measure the amount of pulp wash
added. Because the two orange products are chem-
ically very similar and pulp wash adulteration is dif-
ficult to detect, the present work was aimed at detecting
differences between the two “pure” products. The sample
set is intended to be sufficiently large to cover the range
of natural variability likely to be encountered in prac-
tice.
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MATERIALS AND METHODS

Materials. Table 1 summarizes the details of the 313
samples collected for this study. The samples came from 16
different countries, mainly Brazil (50% of the data set),
followed by Israel (10%) and the United States (Florida),
Morocco, and Cuba (6% each). The varieties included Valencia
(20%), Pera, and Navel. For 45% of the samples, the variety
was unknown. The majority of the pulp washes were from
Brazil (39 of 50) with others from Florida (6), Argentina (1),
or unknown (4). The concentrated samples were diluted to 11-
12 °Brix prior to measurement (see Methods). However, not
all of the samples were standardized to the same Brix value
prior to measurement because some, as received, already had
a lower refractometer reading than this. Thus, the single-
strength samples were measured as they were received.
Samples with 11-12 °Brix formed 50% of the data set, with
35% having <11 °Brix and 15% having >12 °Brix. Samples
were collected between 1991 and 1998, the years 1995-1998
accounting for 80% of the data set. The sample collection
included hand-squeezed juices (laboratory prepared from whole
fruit) as well as commercial single-strength and concentrated
juices. Many of the juices were collected directly from produc-
ers in the country of origin; the remainder had been authen-
ticated according to the currently adopted isotopic and chro-
matographic procedures mentioned above.

Methods. NMR Spectroscopy. Concentrates were diluted
with distilled water to 11-12 °Brix using a manual refracto-
meter. The juices were centrifuged, and 750 µL of the
supernatant was mixed with 125 µL of D2O containing 0.14%
w/w dimethyl-2-silapentane-5-sulfonate (DSS) as chemical
shift reference. The position on the frequency axis (chemical
shift) of many NMR signals in orange juice is pH dependent.
The chemical shifts of a particular compound can vary from
sample to sample because of the natural variation in pH. The
pH had to be adjusted because the multivariate analysis
procedures described below require corresponding signals in
different samples to have the same chemical shift. The pH of
all samples was adjusted to 3.74 ( 0.02 by the addition of
microliter amounts of 1 M NaOH or 1 M HCl solutions, and
700 µL of the solution was transferred to a 5 mm o.d. NMR
tube.

1H NMR spectra were recorded at 27 °C on a 500 MHz
Bruker ARX spectrometer fitted with an autosampler. D2O was
used as the internal lock. Each spectrum consisted of 300 scans
of 8192 complex data points with a spectral width of 6024 Hz,
an acquisition time of 1.36 s, and a recycle delay of 2 s per
scan. The NOESY presaturation sequence (9) was used to
suppress the water signal with low power selective irradiation
at the water frequency during both the recycle delay and the
mixing time of 0.1 s. Spectra were Fourier transformed with
1 Hz line broadening, phased, and baseline corrected using
Felix 97 software running on a Silicon Graphics workstation.
The resulting spectra were aligned using the DSS signal as
reference, reduced to the real part, saved as ASCII files, and
transferred to a personal computer for data analysis.

Multivariate Analysis. A. Principal Component Analysis
(PCA). PCA was applied to the data matrix for several reasons.
First, it is essential to reduce the number of variables (data
points) in order to use the chosen classification method of
linear discriminant analysis (LDA). Use of LDA requires that
the number of variables should not exceed the number of
samples. The PCA calculation produces two matrices called

the scores and the loadings. The rows of the scores matrix
correspond to the samples (as in the data matrix), whereas
the columns are the principal components (PCs): the scores
in a given column can be regarded as the samples’ coordinates
for that PC axis. PCA extracts and preserves the “useful”
information in an ordered way. Successive PCs account for
decreasing amounts of variance and are uncorrelated in
contrast to the original variables. These properties mean that
the higher PCs can be discarded, and the number of variables
is reduced without losing information. PCA allows data
patterns to be more clearly visualised. Plots of the scores for
different pairs of PCs can reveal which samples have similar
properties: they appear as clusters on the two-dimensional
plots. Each column vector of the loadings matrix represents
one PC and the elements of the vector relate that PC to the
original variables. The column plots have the same form as
the NMR spectra and, to some extent, provide interpretable
chemical information on the factors responsible for the cluster-
ing.

B. Linear Discriminant Analysis (LDA). The LDA classifica-
tion procedure implemented here takes the scores as inputs
and uses the Mahalanobis distance as the measure of distance
between samples (8). The available samples are divided into
training and validation sets. Using the training set, the mean
positions of the predefined groups (orange juices and pulp
washes) are calculated in the multidimensional space defined
by the PCs. Each sample in the training set is then reallocated
to the group with the nearest mean position, and the result is
compared to the original (correct) assignment. The analyst has
to determine how many PCs are required to give the best
predictive model. A series of models is examined, starting from
one PC and adding one PC at a time. The optimal number of
PCs is determined from the classification success rate for the
training set. For the model to be acceptable, a comparable
success rate has to be obtained when it is applied to the
validation set (see Results and Discussion).

Stepwise LDA differs from the classical LDA procedure in
the choice of PCs to be used (10). For classical LDA, the PCs
are taken in order PC1, PC2, PC3, etc. Due to the properties
of PCA, PC1 always accounts for the greatest variance followed
by PC2, then PC3, etc. In the present case, the spectra of
samples from the two groups (orange juice and pulp wash) are
so similar that the natural variation in composition within
each group of samples is as great as or even greater than the
variation observed between the two groups. The samples are
clustered in unbiased fashion according to the quantitative
differences observed between their spectra. The first few PCs
may account for the majority of the variance in the data set,
but the information may not be the most relevant for distin-
guishing orange juice from pulp wash samples. The stepwise
LDA procedure picks out, as the first PC in the model, the
one that gives the highest classification success rate. The next
and subsequent PCs are added to the model using the same
criterion regardless of the proportion of variance associated
with them. Again, it is important to validate each model by
classifying new samples from both groups in a test set.

C. Partial Least Squares (PLS), Canonical Variates Analysis
(CVA). The data were also analyzed using PLS for the data
reduction step. Two methods were used for the discrimina-
tion: LDA and CVA. Model building and LDA are carried out
as above with the scores from PLS replacing those from PCA.
PLS data reduction is carried out on a training set and requires
information on group membership to be supplied with the data
matrix. The two classification procedures have different pos-
sible outcomes. In LDA the sample has to be assigned to one
of the two groups, whereas in CVA it can be assigned to
“neither” if it falls outside the tolerance limits determined for
each group. Kemsley (8) has described PLS/LDA and PLS/CVA
procedures in detail.

Software. PCA was carried out in Matlab, version 4.2c.1
(The MathWorks Inc., Natick, MA). LDA and stepwise LDA
procedures were carried out with in-house Matlab macros for
model building and validation. PLS/LDA and PLS/CVA pro-
cedures were carried out using WINDAS software (8).

Table 1. Summary of the Orange Juices and Pulp
Washes Studied

samples 263 pure orange juices plus 50 pulp washes
countries 16 different countries
variety >25 varieties
°Brix 1.5 < °Brix < 15
year samples collected from 1991 until 1998
processing pure samples: 100 hand squeezed,

49 single strength, 114 concentrated
pulp washes: 39 concentrated and

11 single strength
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For each spectrum, 4140 points were extracted from the
original 8192 points using a PASCAL program written in-
house. The regions containing water and ethanol signals as
well as parts of the spectrum that did not contain any signals
were excluded. Two-thirds of the samples made up the training
set, and the remaining one-third constituted the validation set.
The samples in the data matrix were ordered so that the
authentic juices came first followed by the pulp washes. Within
these groups there was a further division of samples into
“single strength” and “originally from concentrate”. The order
of samples was otherwise random. Every third sample (3, 6,
9, etc.) was placed in the validation set. Essentially the same
results as those described here were obtained when samples
1, 4, 7, etc., or samples 2, 5, 8, etc., were chosen as the
validation set.

The effects of various data processing treatments (normal-
ization, scaling) on the MVA were determined. The data matrix
was normalized by adjusting the total intensity of each
spectrum (row) to unity. In principle this should remove the
variation resulting from use of samples with different Brix

values, but in fact normalization had little effect on the
discrimination success rate. PCA was carried out using both
the covariance and correlation methods (8). In the covariance
method the data matrix is mean-centered; in the correlation
method the matrix is mean-centered and scaled so that all
columns have a mean of zero and variance of unity. Results
presented here are from correlation method PCA as this was
found to give slightly better discrimination.

F values and box plots were calculated using the Matlab
macro “anova1” (Statistics toolbox). The macro was modified
to allow calculation of the F value for every point across the
spectrum.

RESULTS AND DISCUSSION

Signal Assignments. Figure 1A shows typical or-
ange juice and pulp wash 1H NMR spectra. After water
suppression, the spectrum was dominated by signals
from the main sugars and acids. The 1H NMR spectra

Figure 1. (A) 500 MHz 1H NMR spectra of typical orange juice and pulp wash samples (overall view); (B) expanded view, high-
field region (key: suc. ac., succinic acid; GABA, γ-aminobutyric acid; glx, glutamine/glutamic acid; DMP, dimethylproline); (C)
midfield region (key: suc, sucrose; glc, glucose; fru, fructose).
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are conveniently viewed as three separate regions
because of the very large range of signal intensities
between regions. For ease of reference the regions are
named in Figure 1A according to the category of
compound that gives rise to the majority of signals for
each region (phenolics, sugars, amino acids). Parts B
and C of Figure 1 depict in detail the signals observed
in two of the regions. The amount of information is so
great that, for any systematic comparison of a large
number of samples, the need for multivariate analysis
becomes obvious. Apart from the presence of the ethanol
triplet at 1.17 ppm in the orange juice spectrum (Figure
1B), there is little obvious difference between the orange
juice and pulp wash spectra. In fact, the orange juice
shown was a single-strength sample, whereas the pulp
wash was from a concentrate. Ethanol was found only
in single-strength and hand-squeezed samples and was
absent from concentrates, whether orange juice or pulp
wash. As it was obviously not a differentiating factor
between juice and pulp wash, the ethanol regions were
excluded from the data matrix. The signal-to-noise ratio
in the phenolic region is quite poor, and this part of the
spectrum remains largely unassigned mainly because
of a lack of relevant reference compounds. However, it
is an important region for discrimination and will be
discussed later.

NMR assignment is essential to determine the origin
of the signals that are shown by MVA to be responsible
for the discrimination between different groups of
products. To assist the assignment, 1H NMR spectra of
standards of amino acids, organic acids, sugars, etc.,
known to be present in orange juice (11) have been run
under the same analytical and spectrometric conditions
as the juice samples. Another way to assign the juice
spectra is through the use of 2D NMR experiments:
COSY or HOHAHA for 1H-1H correlation and HMQC
(or HMBC) for 1H-13C correlation, although the last two
methods were not used in this case. COSY spectra of
orange juice and pulp wash were obtained and assigned

as described previously for other fruit juices (12, 13).
Table 2 summarizes the chemical shift information
available for orange juice from the 2D spectrum and the
reference standards.

Discrimination between Orange Juice and Pulp
Wash. The data set comprised 263 authentic and 50
pulp wash samples each represented by a 1H NMR
spectrum of 4140 points. PCA was carried out on the
training set samples, and the scores were used to create
classification models based on different numbers of PCs
as described. The validation set samples were projected
into the multidimensional space of each model, and the
reclassification success rate was determined using the
criterion of least distance from the group mean position
(determined from the training set). The classification
success rate was compared to that of the training set
samples for each model.

Figure 2 presents the results of the classification for
the two types of orange product. It shows the percentage
of correctly classified samples versus the number of PCs
included in the model. Comparison of results for training
and validation sets showed no evidence of overfitting
as similar rates of success were seen for reclassification
(training set) and assignment (validation set). Nor was
there evidence of underfitting as the success rate
climbed rapidly to 88% using the first three PCs but
then increased slowly for each subsequent PC. Models
based on five and six PCs were almost equally good with
only two fewer samples of the training set correctly
identified by the five-PC model. The model with six PCs
reached 94% correctly classified samples, wrongly as-
signed samples amounting to 13 of 208 for the training
set (10 authentic seen as pulp wash and 3 pulp wash
seen as authentic) and 8 of 105 incorrect for the
validation set (4 authentic seen as pulp wash and 4 pulp
wash seen as authentic). The predictive ability of the
six-PC model was good enough to classify correctly 84
of 88 authentic samples and 13 of 17 pulp washes from
the test set. The quality of the statistical model is judged
by its ability to accommodate the natural variability of
orange juice so that few authentic samples are rejected,
but at the same time it has to be discriminating enough
to reject the pulp wash samples. The six-PC model
efficiently met those two requirements. A six-factor LDA
model incorporating scores from PLS data reduction
identified 87 of 88 orange juices and 16 of 17 pulp
washes correctly in the test set. The CVA model, also
with six PLS factors, gave only one wrongly identified

Table 2. 1H Chemical Shifts of Compounds in Orange
Juice and Pulp Washes from 1D and 2D (COSY,
HOHAHA) NMR

compound chemical shifts (ppm)

Val 0.98 1.03 2.26
ethanol 1.17 3.65
? 1.22 3.72 3.95
? 1.26 3.03
Thr 1.32 4.26
Ala 1.47 3.79
Arg 1.68 1.9 3.25 3.76 7.22
Orn? 1.74 3.03
quinic acid 1.88 2.09 4.02
GABA 1.93 2.45 3.03
Pro 1.99 2.07 2.33 3.34 3.41 4.12
DMP 2.15 2.28 2.49 3.09 3.28 3.53 3.69 4.07
Glx 2.15 2.49
? 2.32 2.96
? 2.42 2.63 4.23
malic acid 2.68 2.85 4.42
citric acid 2.76 2.82
Asx 2.85 2.95 4.00
succinic acid 2.63
â-Fru 4.10
â-Glc 4.62
R-Glc 5.23
Suc 5.41 4.20
narirutin? 6.25 6.97 7.44
Tyr 6.89 7.18
Phe 7.32 7.42
His 8.65

Figure 2. Dependence of LDA classification success rates on
number of PCs included in the model. The PC added at each
stage of the stepwise LDA procedure is indicated. Correlation
method PCA was used.
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sample (pulp wash identified as orange), but 7 of 88
orange juices and 6 of 17 pulp washes were assigned to
neither group. This gives a better picture of the number
of borderline cases than does LDA.

Although these results are encouraging, other tech-
niques have been reported to detect pulp wash addition
at levels of 10% (NIR/PCA with a 20-factor model; 5) or
even less (capillary electrophoresis/neural network; 14).
It was decided not to proceed with NMR experiments
on samples at this level of adulteration because, to
succeed, one would expect to have complete success in
discriminating pulp wash itself from orange juice. NIR
spectroscopy is perhaps more successful than NMR
because the samples are examined as dried solids and
signals may be present from components (insoluble
phenolics, pectin) that are not detected by NMR. How-
evef, no definite information on which components were
responsible for the success of the discrimination could
be obtained from the NIR data (5). NMR is more
promising in this regard.

Stepwise LDA has the advantage of selecting first the
PCs that give the best discrimination between the two
groups. Figure 3 shows the plot of the sample scores on
PC4 versus PC3, the first two PCs selected. It clearly
appeared that the “pure” group samples were located
on the negative part of PC4, whereas the “pulp wash”
ones tended more to the positive side. The chemical

origin of the discrimination was partly revealed in the
loading of PC4 (Figure 4). For example, the loading at
the position of the citric acid signals was negative, which
means that the “pure” samples (more negative scores
on PC4) on average contained more citric acid than the
pulp washes. More interestingly, the loadings corre-
sponding to a set of signals later identified as belonging
to dimethylproline (1), as well as those of an unknown

compound (1.13 ppm), were positive, meaning that their
content appeared to be greater in the pulp wash group
than in the pure one. Dimethylproline was not previ-
ously reported as a marker compound for the discrimi-
nation between orange juice and pulp wash. The iden-
tification of this molecule was based on the shifts
obtained from the COSY spectrum of an orange juice
(Table 2) and by comparing these with the chemical
shifts quoted by Blunden et al. (15). Dimethylproline
signals indeed appeared more prominently in a second
COSY spectrum of a pulp wash sample. The most
noticeable signals in the 1D spectra were the two methyl
singlets at 3.09 and 3.28 ppm, flanking the â-Glc H-2
multiplet at 3.26 ppm. Rapp et al. (16) first pointed to
the presence of dimethylproline in orange juice in a 13C
NMR study, although not in the context of authentica-
tion. They reported that the dimethylproline concentra-
tion in orange juice was between 240 and 700 mg L-1,
making dimethylproline one of the major compounds in
orange juice after sugars and organic acids.

Figure 5A presents a histogram summarizing the
intensity distribution of one of the methyl signals of
dimethylproline (3.28 ppm) in the authentic and pulp
wash samples. The height of the methyl signal was
obtained after normalization (to a value of 1) of the total
spectral intensity for each sample, to compensate for
differences in Brix value. The authentic group ap-
proximately followed a normal population distribution
with a mean intensity of 1.7 × 10-3. The pulp wash

Figure 3. PC scores on the first two PC axes (PC4 and PC3)
selected by the stepwise LDA procedure: (A) scores from PCA
of the training set spectra; (B) scores for the validation set
calculated using the training set PC loadings.

Figure 4. PC4 loading (lower solid line) and mean spectrum
of all samples (upper dashed line), high-field region.
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group distribution was less well-defined (because of the
smaller number of individuals). The spread of the
intensities was greater than for the authentic samples,
and the mean value was 2.8 × 10-3. The notched box
plot in Figure 5B gives another view of the dimethyl-
proline distribution between the two groups. The three
horizontal lines of each box are at (from bottom to top)
the 25th percentile, median, and 75th percentile values.
The median values clearly differed, whereas the notches,
which represent a robust estimate of uncertainty about
the median, did not overlap. ANOVA (17) gave an F
value of 188 (with degrees of freedom of 1 and 311, an
F value of 10.8 corresponds to P < 0.001), which clearly
rejected the null hypothesis that the two populations
were not significantly different. However, the range of
values (indicated by the vertical lines and outlier
symbols) did overlap considerably. In the case of citric
acid signals, the medians were also significantly differ-
ent, but the range for the authentic group was very wide
and completely overlapped the rather narrow range for
pulp wash. Thus, neither dimethylproline nor citric acid
levels on their own can be used to distinguish orange
juice from pulp wash, although both play a part in the
multivariate discrimination.

It was of interest to explore what other signals or
compounds might be important for the discrimination
so a Matlab macro was written to extend the calculation
of the F value to every data point in the spectrum. A
plot of the F values thus obtained should reveal the
signals of potential marker compounds, that is, those
associated with the highest F values. Figure 6A shows
the F values compared with the mean spectrum of all
samples (authentic plus pulp wash) in the low-field or
“phenolic” region. The 11 peaks or multiplets with the
highest F values (all with F > 50) are indicated on the
mean spectrum. Plotting the mean spectrum for each
group separately revealed that it was always the pulp
wash samples that seemed to contain more of these
unknown compounds (Figure 6B). Some differences of
pattern between the two mean spectra were not picked
up by the ANOVA procedure: the multiplet just to the
left of peak 4, for example, appeared in the mean pulp
wash spectrum but not at all in the authentic one.
However, examination of the individual pulp wash
spectra showed that this multiplet had an extremely
high value in only one sample and was not characteristic
of pulp wash.

The assignment of the unknown 11 signals needs to
be done to determine if they are from known or novel
marker compounds. This might be achieved by measur-
ing 1H spectra of suspected compounds (if available as
reference standards) or by using HPLC NMR. A recent

Figure 5. Signal intensity distributions for methyl signal
(3.28 ppm) of DMP, comparison of orange juice (“authentic”)
and pulp wash groups: (A) histograms; (B) box plots showing
medians, confidence intervals (notches), range, and outliers
(+).

Figure 6. (A) F values and (below) mean spectrum of all
samples, low-field (“phenolic”) region; (B) mean spectra for
authentic and (below) pulp wash samples, phenolic region.
Chemical shifts (parts per million) of numbered peaks: 1, 9.12;
2, 8.82; 3, 8.06; 4, 7.73; 5, 7.46; 6, 7.42; 7, 7.13; 8, 6.96; 9, 6.25;
10, 6.21; 11, 6.15.
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paper (14) has examined the potential of some phenolic
compounds as markers for pulp wash adulteration. The
study concluded that the three most useful marker
compounds were didymin, narirutin, and phlorin. Some
of the unknown signals mentioned above, for example,
9, 10, and 11, in Figure 6B, at ∼6.2 ppm, are possibly
from one or more of these compounds (18, 19), although
it is difficult to be certain as the appropriate reference
standards were not available. In a previous NMR/PCA
study (6) orange juices and pulp washes were distin-
guished on the first PC, although only three pulp wash
samples were used. It was proposed that aromatic
compounds such as naringenin or hesperidin were
partly responsible for the discrimination. Signals of
hesperidin could not be positively identified in our
spectra despite comparison with a standard, but on the
basis of NMR data for naringin (20), some possible
signals of narirutin were identified (Table 2), including
peaks 6 and 8 and one at 6.25 ppm in the region of peaks
9-11. HPLC analysis of two pulp wash samples, one in
which NMR signals 9-11 were essentially absent and
a second in which they were very prominent, showed
an 8-fold increase of one peak in the second sample. It
was assigned as a simple phenolic glycoside with a UV
spectrum identical to that of phlorin (19). The flavanone
glycosides increased by only 2-fold at most. Peaks 9-11
were therefore assigned to phlorin or closely related
compounds. Hesperidin is present in high total amounts

in pulp wash but in a very insoluble form (2): stronger
NMR signals may result from a more readily soluble
compound, such as phlorin, even though its total
amount is lower.

In the high-field and midfield regions there is the
opportunity to compare the signals picked out with high
F values with those that were important on the PC4
loading discussed above (Figure 4). Figure 7 shows a
plot of the F values together with the mean spectrum
of all samples in the amino acid region. The ANOVA
procedure picked out signals of dimethylproline, proline,
and alanine with F > 50. Between 1.4 and 0.7 ppm there
were a number of unassigned signals (13-18), associ-
ated with quite minor features of the mean spectrum
(intensities comparable with the methyl signals of
valine, leucine, and isoleucine). The most notable with
F > 100 are the broad signal 13 (δ 1.4) and the singlet
18 (δ 0.7).

The midfield region contained strong signals from the
sugars and citric acid. Here the indicator F value has
been arbitrarily set to 100 because identification of
signals with lower F values is not easy in the center of
the spectrum (Figure 8). The highest F values were
given by the N-methyl signals of dimethylproline plus
other more minor peaks (labeled 19-21). The identifica-
tion of dimethylproline as a marker compound agrees
with the conclusion drawn from the PC4 loading, which
indicated higher average concentrations of dimethyl-

Figure 7. F values and (below) mean spectrum in the high-field region (key: A, malic ac.; B, succinic ac.; C, DMP; D, glx; E,
GABA; F, pro; G: arg; H, quinic ac.; I, ala; J, thr; K, val; L, ileu; M, leu). Chemical shifts (parts per million) of numbered peaks:
12, 1.75; 13, 1.37; 14, 1.29; 15, 1.22; 16, 1.06; 17, 0.8; 18, 0.71.

Figure 8. F values and (below) mean spectrum in the midfield region. Chemical shifts (parts per million) of numbered peaks:
19, 4.45; 20, 3.27; 21, 3.18.
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proline in pulp wash compared with authentic juices.
The citric acid was shown in the same loading (Figure
4) to be at lower average concentration in pulp wash
than in authentic samples, whereas an unknown com-
pound (doublet at δ 1.13) appeared like dimethylproline
to have a higher concentration. In the ANOVA test,
however, differences in level of citric acid and the
unknown compound between authentic and pulp wash
groups were not seen as significant. For citric acid this
was probably because it was found at a very wide range
of levels across all samples. For the unknown compound,
examination of individual spectra showed that it was
only found in a few of the hand-squeezed samples but
was present in these at a very high level, possibly from
a deterioration process. This shows the need for caution
in an oversimplified interpretation of information from
the PC loadings. The loadings give some novel and
valuable chemical information about the underlying
difference between the two groups of samples in the case
of dimethylproline but may tend to overemphasize the
importance of other compounds, particularly if their
distribution is somewhat unusual.

This work has shown that NMR combined with
multivariate analysis appears to be a suitable tool for
orange juice authentication. Classification models were
created using a training data set and revealed to be
robust using a validation set. Ninety-four percent of the
samples were correctly classified using six PCs. The
analysis of the loadings also explained that a key to the
difference between authentic and pulp wash juices lay,
among other things, in the difference in the level of
dimethylproline. This compound was not previously
known as a marker compound for recognition of pulp
wash addition. An ANOVA test performed for authentic
and pulp wash groups on each point of the spectrum
revealed that the signals of dimethylproline, together
with numerous other signals, were significantly differ-
ent when the two groups were compared. Dimethylpro-
line and several other compounds with NMR signals
identified but not yet characterized are therefore shown
to be potential marker compounds for the orange juice
adulteration.

Of course, to make the NMR and multivariate analy-
sis method practical, detection of low-level adulteration
is required. This could be the object of further develop-
ments of the method. However, the advantages in terms
of rapidity, simplicity, and diversity of information
obtained make the technique very attractive. Although
only pulp wash adulteration has been considered here,
the spectra of a large number of authentic juices were
collected and will provide a database for investigations
of other types of adulteration. Similar databases of FTIR
spectra have been incorporated in software that is
suitable for use in factories (21) for the authentication
of raspberry and strawberry purees (22, 23).

ABBREVIATIONS USED

CVA, canonical variates analysis; DMP, dimethylpro-
line; LDA, linear discriminant analysis; MVA, multi-
variate analysis; PCs, principal components; PCA,
principal component analysis; PLS, partial least squares
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